数列的实际应用问题一般文字叙述较长,反映的事物背景陌生,知识涉及面广,因此要解好应用题,首先应当提高阅读理解能力,将普通语言转化为数学语言或数学符号,实际问题转化为数学问题,然后再用数学运算、数学推理予以解决. 疑难误区警示 1.应用错位相减法求和时,注意项的对应. 2.正确区分等差与等比数列模型,正确区分实际问题中的量是通项还是前n项和. 方法规律总结 用数列知识解相关的实际问题,关键是合理建立数学模型——数列模型,弄清所构造的数列的首项是什么,项数是多少,然后转化为解数列问题.求解时,要明确目标,即搞清是求和,还是求通项,还是解递推关系问题,所求结论对应的是一个解方程问题,还是解不等式问题,还是一个最值问题,然后进行合理推算,得出实际问题的结果. 例一:某城市2013年末汽车拥有量为30万辆,预计此后每年将上一年末汽车拥有量的6%报废,并且每年新增汽车数量相同.为保护城市环境,要求该城市汽车拥有量不超过60万辆.从2013年末起,n年后年末汽车拥有量为bn+1万辆,若每年末的拥有量不同. (1)求证:{bn+1-bn}为等比数列; (2)每年新增汽车数量不应超过多少辆? [分析] 解答应用题的关键是将自然语言转化为数学语言,联系所学数学知识点建立正确的数学模型.
|